python - How to group pandas dataframe by unique combination of two columns? -
i have pandas data frame below:
to price ny ca 2000 ny mi 4000 ca ny 3000 ny ca 3000
how can efficiently (and store) separate data frames each unique combination of , from? end goal make graphs using data frames formed. alternative(and more efficient) method welcome.
example:
df 1:
to price ny ca 2000 ny ca 3000
df 2:
to price ny mi 4000
df 3:
to price ca ny 3000
you can apply df.groupby
operation on to
, from
, iterate on each group.
in [749]: df_list = [g _, g in df.groupby(['to', 'from'])] in [750]: d in df_list: ...: print(d) ...: print('-' * 20) ...: price 2 ca ny 3000 -------------------- price 0 ny ca 2000 3 ny ca 3000 -------------------- price 1 ny mi 4000 --------------------
each element in df_list
dataframe.
a word of advice not break these groups unless need to.
Comments
Post a Comment