initialization - Initializing 1 Layer Neural Network Parameters -
i trying initialize following nn model
def initialize_parameters(n_x, n_h, n_y):
w1 = np.random.randn(4,2) *0.01 b1 = np.zeros((4,1)) w2 = np.random.randn(1,4) * 0.01 b2 = np.zeros((1,1)) assert (w1.shape == (n_h, n_x)) assert (b1.shape == (n_h, 1)) assert (w2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1)) parameters = {"w1": w1, "b1": b1, "w2": w2, "b2": b2} return parameters
my output comes out :
w1 = [[-0.00416758 -0.00056267] [-0.02136196 0.01640271] [-0.01793436 -0.00841747] [ 0.00502881 -0.01245288]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] w2 = [[-0.01057952 -0.00909008 0.00551454 0.02292208]] b2 = [[ 0.]]
whereas correct answer should :
w1 [[-0.00416758 -0.00056267] [-0.02136196 0.01640271] [-0.01793436 -0.00841747] [ 0.00502881 -0.01245288]] b1 [[ 0.] [ 0.] [ 0.] [ 0.]] w2 [[-0.01057952 -0.00909008 0.00551454 0.02292208]] b2 [[ 0.]]
w1, , b1 wrong, cannot make work other way. newbie here. in advance!
it doesn't accept because hardcoded values f.ex. 4 , 2 in np.random.randn(4,2) *0.01. instead use arguments n_h, n_x.
Comments
Post a Comment